
REPORT
Smart contract security review for codefunded

Prepared by: Composable Security
Report ID: CFND-290d84c
Test time period: 2023-11-07 - 2023-11-14
Retest time period: 2023-12-12 - 2023-12-19
Report date: 2023-12-19
Version: 1.5
Visit: composable-security.com

https://composable-security.com

composable-security.com

Contents
1. Retest summary (2023-12-19) 3

1.1 Results . 3
1.2 Scope . 4

2. Current findings status 5

3. Security review summary (2023-11-14) 6
3.1 Results . 6
3.2 Scope . 7

4. Project details 8
4.1 Projects goal . 8
4.2 Agreed scope of tests . 8
4.3 Threat analysis . 9
4.4 Testing methodology . 10
4.5 Disclaimer . 10

5. Vulnerabilities 12
[CFND-290d84c-C01] Loss and theft of tokens in batch executor 12
[CFND-290d84c-H01] Cancelling order via re-entrancy 14
[CFND-290d84c-M01] Stealing treasury tokens via re-entrancy 15
[CFND-290d84c-M02] Critical impact on FundSwap by malicious plugin 17
[CFND-290d84c-M03] Invalid fee used . 19
[CFND-290d84c-M04] Tokens theft via modified fee 20
[CFND-290d84c-M05] Inconsistent use of modified order 21
[CFND-290d84c-M06] Incorrect handling of non-standard ERC20 tokens 22
[CFND-290d84c-L01] Unfavorable rounding for the maker 24
[CFND-290d84c-L02] Lack of 2-step ownership transfer 25
[CFND-290d84c-L03] Using counter ids in chains with long reorgs 26
[CFND-290d84c-L04] Whitelist bypass via changed order 27
[CFND-290d84c-L05] Full order fill with partial fill 28

6. Recommendations 30
[CFND-290d84c-R01] Consider using the latest solidity version 30
[CFND-290d84c-R02] Import specific contracts from the file 30
[CFND-290d84c-R03] Use correct type uint16 . 31
[CFND-290d84c-R04] Use proper prefixes for contracts 32
[CFND-290d84c-R05] Use prefix increment . 32
[CFND-290d84c-R06] Inconsistent checks of balances and approvals for order . . 33

1

https://composable-security.com

composable-security.com

[CFND-290d84c-R07] Remove maker key from mapping 34
[CFND-290d84c-R08] Handle malicious string data 35
[CFND-290d84c-R09] Use nested ifs . 35
[CFND-290d84c-R10] Store length before the loop 36
[CFND-290d84c-R11] Avoid multiple calls with the same parameters 37

7. Impact on risk classification 38

8. Long-term best practices 39
8.1 Use automated tools to scan your code regularly 39
8.2 Perform threat modeling . 39
8.3 Use Smart Contract Security Verification Standard 39
8.4 Discuss audit reports and learn from them . 39
8.5 Monitor your and similar contracts . 39

2

https://composable-security.com

composable-security.com

1. Retest summary (2023-12-19)

The description of the current status for each retested vulnerability and recommendation
has been added in its section.

1.1. Results
The Composable Security team was involved in a one-time iteration of verification whether
the vulnerabilities detected during the tests (between 2023-11-07 and 2023-11-14) were re-
moved correctly and no longer appear in the code.

The current status of detected issues is as follows:

critical vulnerability has been fully fixed.
high vulnerability has been fully fixed.
6 vulnerabilities with a medium impact on risk were handled as follows:

5 has been fixed,
1 has been acknowledged.

5 vulnerabilities with a low impact on risk were handled as follows:
4 has been fixed before the retest,
1 has been fixed during the retest, after consultation (commits: db5ca52, 7fb73d7,
20f311f).

11 security recommendations were handled as follows:
10 have been implemented,
1 have been acknowledged.

During the retest additional safeguard has been proposed by the testing team and imple-
mented by the developers team in commit: c238961f7d25fb913f26e7377f42081cf241ca42.

3

https://composable-security.com
https://github.com/codefunded/sc-fundswap//commit/db5ca52
https://github.com/codefunded/sc-fundswap//commit/7fb73d7
https://github.com/codefunded/sc-fundswap//commit/20f311f
https://github.com/codefunded/sc-fundswap//commit/c238961f7d25fb913f26e7377f42081cf241ca42

composable-security.com

1.2. Scope
The retest scope included the same contracts, on a different commit in the same repository.

GitHub repository: https://github.com/codefunded/sc-fundswap/
CommitID: b279c659c822415ddca778dc44a15c176ede68e5

4

https://composable-security.com
https://github.com/codefunded/sc-fundswap/

composable-security.com

2. Current findings status

ID Severity Vulnerability Status
CFND-290d84c-C01 CRITICAL Loss and theft of tokens in batch executor FIXED

CFND-290d84c-H01 HIGH Cancelling order via re-entrancy FIXED

CFND-290d84c-M01 MEDIUM Stealing treasury tokens via re-entrancy FIXED

CFND-290d84c-M02 MEDIUM Critical impact on FundSwap by malicious
plugin

ACKNOWLEDGED

CFND-290d84c-M03 MEDIUM Invalid fee used FIXED

CFND-290d84c-M04 MEDIUM Tokens theft via modified fee FIXED

CFND-290d84c-M05 MEDIUM Inconsistent use of modified order FIXED

CFND-290d84c-M06 MEDIUM Incorrect handling of non-standard ERC20
tokens

FIXED

CFND-290d84c-L01 LOW Unfavorable rounding for the maker FIXED

CFND-290d84c-L02 LOW Lack of 2-step ownership transfer FIXED

CFND-290d84c-L03 LOW Using counter ids in chains with long reorgs FIXED

CFND-290d84c-L04 LOW Whitelist bypass via changed order FIXED

CFND-290d84c-L05 LOW Full order fill with partial fill FIXED

ID Severity Recommendation Status
CFND-290d84c-R01 INFO Consider using the latest solidity version IMPLEMENTED

CFND-290d84c-R02 INFO Import specific contracts from the file IMPLEMENTED

CFND-290d84c-R03 INFO Use correct type uint16 IMPLEMENTED

CFND-290d84c-R04 INFO Use proper prefixes for contracts IMPLEMENTED

CFND-290d84c-R05 INFO Use prefix increment IMPLEMENTED

CFND-290d84c-R06 INFO Inconsistent checks of balances and ap-
provals for order

IMPLEMENTED

CFND-290d84c-R07 INFO Remove maker key from mapping IMPLEMENTED

CFND-290d84c-R08 INFO Handle malicious string data ACKNOWLEDGED

CFND-290d84c-R09 INFO Use nested ifs IMPLEMENTED

CFND-290d84c-R10 INFO Store length before the loop IMPLEMENTED

CFND-290d84c-R11 INFO Avoid multiple calls with the same parame-
ters

IMPLEMENTED

5

https://composable-security.com

composable-security.com

3. Security review summary (2023-11-14)

3.1. Results
The codefunded engaged Composable Security to review security of FundSwap. Compos-
able Security conducted this assessment over 1 week with 2 engineers.

The summary of findings is as follows:

1 critical risk impact vulnerability was identified. Its potential consequences is:
Stealing tokens from the chain of sequential orders filled by FundSwapBatchExecutor
contract.

1 vulnerability with a high impact on risk was identified. Its potential consequence is:
Stealing tokens from the pool and keeping the burnt order data in orders mapping
(defined in FundSwapOrderManager)

6 vulnerabilities with a medium impact on risk were identified.
5 vulnerabilities with a low impact on risk were identified.
11 recommendations have been proposed that can improve overall security and help
implement best practice.
The project is highly centralized, but that was also its intention. Owner addresses have
a lot of power, especially through the selection of plugins used.
The most important issue with medium impact on risk concerns plugins and their ability
to influence core business logic in an unrestricted way.
There are risks in the project that are worth communicating to the community or noting
in the documentation due to the limited technical possibilities to prevent them. Some
of the operations may be abused due to the nature of blockchain. An example of such
a function is cancelOrder, which can be front-run by another user.

6

https://composable-security.com

composable-security.com

The team was engaged and the communication was very good.

Composable Security recommends that codefunded complete the following:

Address all reported issues.
Extend unit tests with scenarios that cover detected vulnerabilities where possible.
Consider whether the detected threats and vulnerabilities may exist in other places (or
ongoing projects) that have not been detected during engagement.
Review dependencies and upgrade to the latest versions.

3.2. Scope
The scope of the tests included selected contracts from the following repository.

GitHub repository: https://github.com/codefunded/sc-fundswap/
CommitID: 290d84c77167058280119ee829ebc114c18955e6

The detailed scope of tests can be found in Agreed scope of tests.

7

https://composable-security.com
https://github.com/codefunded/sc-fundswap/

composable-security.com

4. Project details

4.1. Projects goal
The Composable Security team focused during this audit on the following:

Perform a tailored threat analysis.
Ensure that smart contract code is written according to security best practices.
Identify security issues and potential threats both for codefunded and their users.
The secondary goal is to improve code clarity and optimize code where possible.

4.2. Agreed scope of tests
The subjects of the test were selected contracts from the codefunded repository.

GitHub repository:
https://github.com/codefunded/sc-fundswap/
CommitID: 290d84c77167058280119ee829ebc114c18955e6

Files in scope:

contracts/FundSwap.sol
contracts/FundSwapOrderManager.sol
contracts/IFundSwap.sol
contracts/OrderStructs.sol
contracts/libraries

contracts/libraries/OrderLib.sol
contracts/libraries/OrderSignatureVerifierLib.sol
contracts/libraries/PairLib.sol
contracts/libraries/PluginLib.sol
contracts/libraries/TokenTreasuryLib.sol

contracts/periphery
contracts/periphery/FundSwapBatchExecutor.sol
contracts/periphery/FundSwapPrivateOrderExecutor.sol

contracts/plugins
contracts/plugins/FeeAggregatorPlugin.sol
contracts/plugins/IPlugin.sol
contracts/plugins/TokenWhitelistPlugin.sol

Documentation: Not provided. A brief description of contracts is included in the README.md
file.

8

https://composable-security.com
https://github.com/codefunded/sc-fundswap/

composable-security.com

4.3. Threat analysis
This section summarizes the potential threats that were identified during initial threat model-
ing performed before the audit. The tests were focused, but not limited to, finding security
issues that could be exploited to achieve these threats.

Potential attackers goals:

Stealing tokens
Loosing tokens
Minting orders NFT without limits
Non-cancelable orders
Unauthorized plugin
Unauthorized token
Lack of transfer when creating or filling order
Deanonymization of orders
Invalid calculations
Bypassing access control
Denial of Service
Centralization risk

Potential scenarios to achieve the indicated attacker’s goals:

Double-fill of the order because of lack of replay attacks
Double transfer of token during filling the order via re-entrancy
Cancelling the order during the filling process (via re-entrancy)

9

https://composable-security.com

composable-security.com

Impersonating the maker with someone else’s signature of the order
Stealing tokens via malicious chain of orders
When cancelling order, malicious treasury owner withdraws order’s tokens before they
are returned to maker
Re-submitting different order with the same id after Polygon’s fork and sending the filling
transaction for worse parameters
Filling the order created for other filler
Insufficient signature verification for the order
Malicious plugin updating order to increase fees
Out of gas (DoS) because of expensive order fulfillment
Using non-whitelisted tokens
Invalid calculation of fee amount
Unauthorized mint of orders’ NFT
Unauthorized burn of orders’ NFT
Updating the order to the detriment of the user
Invalid amount of tokens sent after cancellation
Using incorrect fee from the fees list
Private key compromise, rug-pull

4.4. Testing methodology
Smart contract security review was performed using the following methods:

Q&A sessions with the codefunded development team to thoroughly understand in-
tentions and assumptions of the project.
Initial threat modeling to identify key areas and focus on covering the most relevant
scenarios based on real threats.
Automatic tests using slither.
Custom scripts (e.g. unit tests, PoCs) to verify scenarios from initial threat modeling.
Manual review of the code.

4.5. Disclaimer
Smart contract security review IS NOT A SECURITY WARRANTY.

During the tests, the Composable team makes every effort to detect any occurring problems
and help to address them. However, it is not allowed to treat the report as a security certificate
and assume that the project does not contain any vulnerabilities. Securing smart contract
platforms is a multi-stage process, starting from threat modeling, through development based
on best practices, security reviews and formal verification, ending with constant monitoring
and incident response.

Therefore, we encourage the implementation of security mechanisms at all stages of

10

https://composable-security.com

composable-security.com

development and maintenance.

11

https://composable-security.com

composable-security.com

5. Vulnerabilities

[CFND-290d84c-C01] Loss and theft of tokens in batch
executor
CRITICAL FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended. The minAmountOut field has
been added to the OrderFillRequest struct and is verified after the order is filled. Ad-
ditionally, left-over output tokens are sent out to the filler.

Affected contracts
FundSwapBatchExecutor.sol

Description
The batchFillPublicOrdersInSequence function allows users to fill a chain of orders. The
contract will pull tokens from the user only for the first order and then use the output tokens
in the next one.

In the end, the batchFillPublicOrdersInSequence function transfers the output token to
the user, but only from the last filled order. If there are unused output tokens received from
the orders in the middle of the chain, they are not transferred to the user and stay in the
FundSwapBatchExecutor contract.

Additionally, the attacker is able to front-run taker’s transaction and partially fill the last order
and make user get less of the last output token than expected.

Later those left-over tokens can be stolen by other users using a different malicious chain of
two orders.

Attack scenario
1 Some makers added the following orders:

(a). buying 1000 tokens A for 100 tokens B,
(b). buying 200 tokens B for 200 tokens C,
(c). buying 100 tokens C for 100 tokens D.

2 The victim taker fills the following chain of orders:
(a). selling 1000 tokens A for 100 tokens B,

12

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapBatchExecutor.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contract/FundSwapBatchExecutor.sol#L90

composable-security.com

(b). selling 100 tokens B for 100 tokens C,
(c). selling 100 tokens C for 100 tokens D.

3 The victim taker assumes he will receive 100 tokens D.
4 The attacker front-runs the taker’s batch transaction and fills the third order partially

(sells 99 tokens C for 99 tokens D).
5 When the taker’s transaction is executed, in the last fill the function _fillPublicOrder

pulls only 1 token C from FundSwapBatchExecutor contract and sends back 1 token D
(and closes the order).

6 In the end, FundSwapBatchExecutor contract sends only 1 token D to victim taker and
99 tokens C are left in FundSwapBatchExecutor.

7 Next, the attacker sends one transaction that firstly adds the following orders (tokens X
and Y):
(a). buying 1 token Y for 1 token X,
(b). buying 99 tokens C for 1 tokens X.
and then fills them though FundSwapBatchExecutor with the following chain:
(a). selling 1 token Y for 1 token X,
(b). selling 99 tokens C for 1 token X.

8 When the FundSwap contract fills the second order, the 99 tokens C are sent to the
attacker who was the maker of this order.

Vulnerable scenario
There is also a scenario when the taker can loose tokens due to invalid chain of fill requests:

1 Some makers added the following orders:
(a). buying 1000 tokens A for 100 tokens B,
(b). buying 200 tokens B for 200 tokens C,
(c). buying 100 tokens C for 100 tokens D.

2 The victim taker fills the following chain of orders:
(a). selling 1000 tokens A for 100 tokens B,
(b). selling 100 tokens B for 100 tokens C,
(c). selling 50 tokens C for 50 tokens D.

3 The victim taker assumes he will receive 50 tokens C and 50 tokens D.
4 The victim receives only 50 tokens D.

Result of the attack: Stealing tokens from the chain of sequential orders filled by
FundSwapBatchExecutor contract.

Recommendation
The FundSwapBatchExecutor contract should either return all tokens that are left
on it after filling the whole chain of orders or make sure that the output tokens from

13

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L282
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapBatchExecutor.sol#L115

composable-security.com

the previous order is equal to the input tokens for the current order and equal to
the value provided by taker in fill request, and revert otherwise.
To protect from changing the orders via partial fill and front-running, we recom-
mend adding a minAmountOut field in each OrderFillRequest and verifying this
at the end of fill, so that the taker can be sure that they received at least as much
as they asked for.

References
1. SCSVS G4: Business logic

[CFND-290d84c-H01] Cancelling order via re-entrancy
HIGH FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended. The nonReentrant modifier has
been added. The updateOrder function verifies whether the order exists.
The whitelist plugin is not added by default in the Solidity code, but it is included in the
deployment script.

Affected contracts
FundSwap.sol
FundSwapOrderManager.sol

Description
The cancelOrder function is not protected from re-entrancy (like other functions are with
nonReentrant modifier) and can be called from the tokens’ callback function (1,2) (e.g. ERC-
777).

This allows the attacker to cancel their order during the filling proces and retrieve twice as
much tokens. In fact, they would get their tokens, but and the same amount from other
makers.

Note: Tokens are meant to be whitelisted, but it’s achieved with plugin that is not required.
Additionally, selected functions in the FundSwap contract are protected from re-entrancy (with
nonReentrant modifier), therefore the testing team assumes that re-entrancy has been in-
cluded in the internal threat model.

14

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contract/FundSwap.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contract/FundSwapOrderManager.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contract/FundSwap.sol#L187
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contract/FundSwap.sol#L412
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contract/FundSwap.sol#L418

composable-security.com

Attack scenario
The attackers might take the following steps in turn:

1 Some user adds order (e.g. selling 10 WETH for 20k USDC). This is required because
the attacker must steal someone’s tokens.

2 Attacker adds the order via their contract (selling 1 WETH for 1000 token X, which has
a callback on receiver or is simply malicious and does any callback).

3 Attacker calls the fillPublicOrderPartially function to partially fill the order (999 X
for 0.999 ETH).

4 The FundSwap contract calls safeTransferFrom function on market buy token, which
calls back the attacker’s contract (re-entrancy in safeTransferFrom function).

5 The attacker’s contract calls the cancelOrder function on order from point 1:
(a). FundSwap sends 1 WETH back to attacker.
(b). FundSwap subtracts the treasury.
(c). FundSwap burns the order in order manager.

6 After re-entrant call the FundSwap contract calls the safeTransfer function on the maker
sell token and transfers 0.999 ETH to the attacker.

7 FundSwap contract subtracts the balance of tokenTreasury for maker sell token which
does not revert, because there is an order added by other user.

8 FundSwap contract updates the order which does not revert because the update function
does not verify whether the NFT for given order still exists, but it simply updates the
orders mapping.

Result of the attack: Stealing tokens from the pool and keeping the burnt order data in
orders mapping (defined in FundSwapOrderManager).

Recommendation
Protect cancelOrder function from re-entrancy (using modifier).
Consider adding whitelisting plugin by default or implementing whitelisting in the
FundSwap contract.
Check whether order’s NFT exists in the updateOrder function.

References
1. SCSVS G6: Communications

[CFND-290d84c-M01] Stealing treasury tokens via
re-entrancy
MEDIUM FIXED

15

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwapOrderManager.sol#L64
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x106-G6-Communications.md

composable-security.com

Retest (2023-12-12)

The vulnerability has been removed as recommended. The nonReentrant modifier has
been added.
However, the tokenTreasury is not subtracted for makerSellToken after the transters
in the _fillPublicOrder and _fillExactInputPublicOrderPartially functions.

Affected contracts
FundSwap.sol

Description
The withdraw function is used by the treasury owner to withdraw outstanding balance of any
provided token. The function makes sure that after withdrawal of the requested amount there
are enough tokens left to cover all active orders.

However, the required amount of tokens can be manipulated using re-entrancy. When filling
the order, the treasury owner can withdraw more tokens than should be allowed.

Note: Tokens are meant to be whitelisted but it’s achieved with plugin that is not required.
Additionally, selected functions in the FundSwap contract are protected from re-entrancy (with
nonReentrant modifier), therefore the testing team assumes that re-entrancy has been in-
cluded in the internal threat model.

Attack scenario
The malicious treasury owner might take the following steps in turn:

1 Some user adds order (e.g. selling 10 WETH for 20k USDC). This is required because
the attacker must steal someone’s tokens.

2 Attacker (malicious treasury owner) adds the order via their contract (e.g. selling 1
WETH for 1000 token X, which has a callback on receiver or is simply malicious and
does any callback).

3 Attacker fills the order from previous point.
(a). FundSwap contract subtracts the balance of makerSellToken in the tokenTreasuruy
(b). FundSwap contract calls safeTransferFrom function on marketBuyToken, which

calls back the attacker’s contract (re-entrancy in safeTransferFrom function).
(c). The attacker’s contract calls the withdraw function for makerSellToken.
(d). FundSwap sends 1 WETH to attacker because the balance of FundSwap was not yet

decreased by the transfer, but the balance in tokenTreasury struct has already
been subtracted.

(e). After re-entrant call the FundSwap contract calls the safeTransfer function and
continues filling the order.

16

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L104

composable-security.com

4 In the end, the attacker withdrew 1 WETH and bought back 1 WETH from his order,
thus the attacker has stolen 1 WETH.

Result of the attack: Stealing tokens from the orders as treasury owner.

Recommendation
Protect withdraw function from re-entrancy.
Subtract makerSellToken in tokenTreasury after transfer.

References
1. SCSVS G6: Communications

[CFND-290d84c-M02] Critical impact on FundSwap by
malicious plugin
MEDIUM ACKNOWLEDGED

Retest (2023-12-12)

The development team has implemented the _checkPluginChanges function, designed
to ascertain the stability of token addresses following modifications by plugins.
Furthermore, the introduction of the minAmountOut parameter serves as a safeguard
against unauthorized alterations of output amounts.
However, it is important to note that this update does not include measures to protect
against Denial of Service (DoS) attacks. Consequently, we strongly advise conducting
a thorough security review for any newly integrated plugins to ensure system integrity
and security.

Affected contracts
FundSwap.sol

Description
Malicious plugins can change makerBuyToken and makerSellToken (not for partial fills), steal
other approved tokens from takers and makers or cause a Denial of Service on the selected
functionalities in the protocol.

Note: The impact on risk has been reduced because the plugins are mean to be controlled
by the trusted third parties.

17

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x106-G6-Communications.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol

composable-security.com

Attack scenario
The malicious plugin might take the following steps to steal the tokens:

1 Maker adds order (e.g. selling 10 WETH for 20k USDC).
2 Fundswap calls PluginLib.runBeforeOrderCreation function.
3 Malicious plugin changes the makerBuyToken from USDC to some fake token or the

makerBuyTokenAmount to 1.
4 Fundswap stores the modified order.
5 The owner of malicious token back-runs the maker and fills the order and gets 10 WETH

for 1 USDC or for a fake token.

The malicious plugin might take the following steps to do the denial of service attack:

1 Maker adds order (e.g. selling 10 WETH for 20k USDC).
2 After some time, maker wants to cancel the order and calls cancelOrder function.
3 Fundswap calls PluginLib.runBeforeOrderCancel function which reverts and blocks

the cancellation.
4 Later, some taker fills the order.
5 Fundswap calls PluginLib.runBeforeOrderFill function which reverts and blocks the

filling.
6 In the end, the tokens are stuck in the contract.

Result of the attack: Stealing tokens by malicious plugins and Denial of Service (until the
owner disables the malicious plugin).

Recommendation
Consider one of the following:

not allow plugins to change all order parameters (use the immutable ones from
the original order),
add the parameter minAmountOut and outToken to OrderFillRequest struct that
allows the taker to specify minimum amount of outToken to be received and revert
the filling operation if the output amount is smaller.

Note: if the team decides to implement a recommendation to now allow plugins to
change token addresses, the outToken parameter can be ommited.
Long term: make sure each plugin is reviewed for security issues that could influence
the whole project.

References
1. SCSVS G6: Communications

18

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x106-G6-Communications.md

composable-security.com

[CFND-290d84c-M03] Invalid fee used
MEDIUM FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended.
The setFeeLevelsForPair function accepts fee levels in ascending order (ordered
by minAmount parameter), but does not check whether the fees are lower for greater
amounts.
Additionally, the _calculateFeeAmount still iterates over the whole list instead of stop-
ping when the the greater minAmount is found.
The pairsForAsset, assetsWithPairFee variables and the getFeesForAllAssets,
getFeeLevelsForAllPairs functions have been removed.
Note: The developers team has been informed about the missing changes and intro-
duced them during the retest in commit: 82c0e14545534dc011de4f76e85d5a80001f3c3c
.

Affected contracts
FeeAggregatorPlugin.sol

Description
The _calculateFeeAmount function calculates the fee for a specific pair of assets and an
input amount.

Each pair can have multiple levels of fees that are based on the amount. When searching for
the fee level, the _calculateFeeAmount function iterates over all levels (FeeAggregatorPlu-
gin.sol#L291) and checks whether the amount is greater than the current level’s minAmount
and its fee is lower than the current one. If those checks are passed, the current fee is
updated to the fee from current level.

However, this search can lead to invalid fees being used.

Vulnerable scenario
The following steps lead to the described result:

1 The owner of fee plugin adds the following levels for a specific pair of tokens:
minAmount: 100 tokens, fee: 1%,
minAmount: 1000 tokens, fee: 2%.

2 The taker fills the order for that pair with the amount of 1001 tokens.

19

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L275
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L291
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L291

composable-security.com

3 The taker will pay 1% fee instead of 2%.

Result of the attack: Using invalid fee for the pair.

Recommendation
We recommend to change the setFeeLevelsForPair to accept only sorted levels
by minAmount in ascending order (keeping the requirement of the first minAmount
to be qual to 0).
Then, the function_calculateFeeAmount should be changed to take the first fee
from the first level (index equal to 0) as the final fee and iterate over the levels
until the amount is smaller than the minAmount and update the final fee.
Unnecessarily, both assets are being stored in assetsWithPairFee and in both
variations of the pair in pairsForAsset. These fields are private, hence they
cannot be directly retrieved by anyone, and their use is confined solely to the
setFeeLevelsForPair and getFeeLevelsForAllPairs functions, where the code
becomes unreadable due to this complexity.
We recommend to store the smaller address asset1 in assetsWithPairFee and
add only the mapping of asset1 -> asset2 in pairsForAsset. This approach will
eliminate the need for a temporary variable in getFeeLevelsForAllPairs and re-
duce the process to a single loop.

References
1. SCSVS G7: Arithmetic

[CFND-290d84c-M04] Tokens theft via modified fee
MEDIUM FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended.

Affected contracts
FeeAggregatorPlugin.sol

Description
Plugin owner can front-run the filling transactions and update the fees to 100%.

20

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L143
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L275
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x107-G7-Arithmetic.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol

composable-security.com

Attack scenario
The attacker (malicious plugin owner) might take the following steps in turn:

1 Maker adds an order (e.g. selling 1 WETH for 2000 USDC).
2 Victim taker fills the order and hopes to receive 1 WETH minus small fee.
3 Fee plugin’s owner front-runs the filling transaction and updates the fee to 100%.
4 Victim pays 2000 USDC but receives no WETH.

Result of the attack: Stealing order’s tokens by the fee plugin owner and treasury owner
who might be the same person.

Recommendation
Add timelock to functions that update fees and other critical parameters in plugins.
Set reasonable maximum fee (e.g. 3%).
Similarly to the recommendation in CFND-290d84c-H01, add the parameter
minAmountOut to OrderFillRequest struct that allows the taker to specify mini-
mum amount to be received and revert the filling operation if the output amount
is smaller.

References
1. SCSVS I1: Basic

[CFND-290d84c-M05] Inconsistent use of modified order
MEDIUM FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended. The token addresses cannot
be changed by plugins.

Affected contracts
FundSwap.sol

Description
Plugins are able to change orders before and after they are created or filled. In the case of
a partial fill the modified order is treated differently from the full fill.

In case of a partial fill: it transfers makerBuyToken from the modified order, but the
makerSellToken is taken from the original order.

21

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x300-Integrations/0x301-I1-Basic.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol

composable-security.com

In case of a full fill: both tokens are taken from the modified order.

Attack scenario
The attackers might take the following steps in turn:

1 Maker adds an order.
2 One of plugins changes both tokens before the fill.
3 Taker partially fills the order.
4 FundSwap transfers makerSellToken from the original order instead of the modified one.

Result of the attack: Transfer of incorrect token.

Recommendation
The modified order should be treated the same on all cases, therefore partial fill
should transfer makerSellToken taken from the modified order.
However, the general recommendation is to not allow to change tokens by the
plugins and take token addresses from the original order in all cases.

References
1. SCSVS G4: Business Logic

[CFND-290d84c-M06] Incorrect handling of non-standard
ERC20 tokens
MEDIUM FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended.
The developers team do not plan to use fee-on-transfer tokens. When creating an order,
the factual amount transferred is calculated and compared with the amount parameter.
If they do not match, the function reverts.
Additionally, the team plans to use whitelist plugin in all cases and do not put non-
standard ERC20 tokens on the list.

Affected contracts
FundSwap.sol
FundSwapPrivateOrderExecutor.sol

22

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol

composable-security.com

Description
Using non-standard ERC20 tokens, such as fee-on-transfer tokens, can lead to Denial of
Service, inability to cancel the order and withdraw the makerSellToken.

When transferring tokens from the msg.sender in createPublicOrder, the contract assumes
that full order.makerSellTokenAmount amount has been received and increases the balance
in tokenTreasury. In fact, the amount has been reduced by the fee.

Later, the functions _fillPublicOrder and _fillExactInputPublicOrderPartially try to send the
order.makerSellTokenAmount amount, but the balance is insufficient or tokens are taken
from the deposit related with a different order.

The same situation happens when the treasury owner wants to withdraw tokens or the maker
wants to cancel the order. Last case where this issue is present is the fillPrivateOrder
function, where the FundSwapPrivateOrderExecutor contract tries to transfer out the privateOrder
.makerBuyToken that was pulled in the same function, but the transaction reverts due to in-
sufficient balance.

Similar problems can arise with rebasing tokens. During the period when they are kept
on the FundSwap contract, their amount might change (increase or decrease). However, the
order’s makerSellTokenAmount is not updated accordingly.

When sending out the changed amount, the transfer would revert (or took the missing amount
from other orders) if the amount decreased or the difference would be left on the FundSwap
contract if the amount increased.

Vulnerable scenario
The following steps lead to the described result:

1 Maker adds an order for 100 tokens X (with 1% fee on transfer).
2 FundSwap pulls 100 tokens (and stores 100 tokens in makerSellTokenAmount), but re-

ceives 99 tokens.
3 FundSwap adds 100 tokens to tokenTreasury.
4 Makers wants to cancel his order and calls cancelOrder function.
5 FundSwap reads makerSellTokenAmount and makes a transfer to the maker with 100

tokens, but has only 99 tokens and the transaction reverts.

Result of the attack: Denial of Service and loss of tokens for fee-on-transfer and rebasing
tokens.

Recommendation
If you are not planning to use non-standard ERC20 tokens, make sure that the
the whitelist plugin is used and such tokens are never added to it.

23

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#164
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L290
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L418
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L113
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L194
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L210
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L187

composable-security.com

When pulling the tokens from maker, check the balance before and after the
transfer to calculate the factual amount transferred and either update the or-
der accordingly (makerSellTokenAmount) or revert if the transferred amount and
makerSellTokenAmount are not equal.

References
1. SCSVS I2: Token
2. SCSVS G4: Business Logic

[CFND-290d84c-L01] Unfavorable rounding for the maker
LOW FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended.

Affected contracts
OrderLib.sol

Description
During the partial fill, the OrderLib library calculates how many tokens should be left after
the order is partially filled. The amount is calculated using division and is rounded down.

That leads to a situation when taker does not have to transfer whole makerBuyTokenAmount
to retrieve all makerSellTokenAmount tokens. As the taker controls the amount of tokens that
is exchanged, the rounding should be in favor of the maker.

Attack scenario
The attackers might take the following steps in turn:

1 Maker adds an order that sells 100 token A for 1000 token B.
2 Taker submits a partial fill with 991 tokens B.
3 FundSwap transfers 991 token B to maker and 100 token A to taker.

Result of the attack: Rounding in favor of taker.

24

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x300-Integrations/0x302-I2-Token.md
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/OrderLib.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/OrderLib.sol#L53

composable-security.com

Recommendation
Add Rounding.Ceil to mulDiv function.

References
1. SCSVS G7: Arithmetic

[CFND-290d84c-L02] Lack of 2-step ownership transfer
LOW FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended.

Affected contracts
FeeAggregatorPlugin.sol
TokenWhitelistPlugin.sol

Description
The TokenWhitelistPlugin and FeeAggregatorPlugin contracts inherit from Ownable con-
tract which allows to instantly transfer ownership to any address except address(0). In case
of invalid address passed as the new owner (e.g. a contract that cannot make calls to pro-
tected functions and the transferOwnership function) there is no way to get the ownership
back.

The Ownable contract is also inherited by the FundSwapOrderManager contract, but its owner
is FundSwap contract and there is no way to transfer or renounce it.

Vulnerable scenario
Faulty operation scenario:

1 Owner transfers ownership to the wrong address.

Result of the attack: No possibility to call the functions protected by onlyOwner modifier.

Recommendation
Use Ownable2Step contract instead of Ownable.
Consider overriding the renounceOwnership function to make it always revert if

25

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/OrderLib.sol#L53
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x107-G7-Arithmetic.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/TokenWhitelistPlugin.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/TokenWhitelistPlugin.sol#L14
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L46

composable-security.com

you do not plan to do it.

References
1. SCSVS G5: Access control

[CFND-290d84c-L03] Using counter ids in chains with long
reorgs
LOW FIXED

Retest (2023-12-19)

The vulnerability has been removed as recommended. The tokenIdCounter variable
has been removed and the tokenHash is used as token identifier.
Additionally, token id to hash mappings in FundSwapOrderManager were removed and
the order is identified with uint256 type (compliant with ERC721) instead of bytes32.

Retest (2023-12-14)

The developers team has used order hash as order’s identifier. However, the
FundSwapOrderManager ERC-721 contract still mints tokens with incremental numbers,
that can be exploited in the following way:

User A creates an order O1 that gets tokenId = 10.
User A creates an order O2 that gets tokenId = 11.
User A transfers token 10 (order O1) to user B.
The chain reorgs.
Attacker resends transaction from step 2, but the order O2 gets tokenId = 10.
Attacker resends transaction from step 3 and transfers the order O2 instead of
O1, because of the tokenId swap.

We recommend to use tokenHash as the identifier of FundSwapOrderManager (ERC721)
token (casted to uint256).

Affected contracts
FundSwap.sol

26

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x105-G5-Access-Control.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol

composable-security.com

Description
The createPublicOrder function creates a new order and its identifier is generated via
safeMint function (from order manager contract) using the tokenIdCounter counter.

The FundSwap project is going to be deployed on Polygon chain where reorgs happen quite
often and can be longer that a couple of minutes. An example of almost a minute reorg was
on 22th of October: 49016661

With the block reorg, the attacker can submit a different order that will reuse the identifier and
resubmit the taker’s transaction that will fill the new order.

Note: The vulnerability requires that the order is created and filled within the reorged trans-
actions.

Attack scenario
The attackers might take the following steps in turn:

1 Before reorg:
Attacker adds an order (e.g. 1 WETH for 2000 USDC) that gets the id 1.
Victim fills the order with id 1.
FundSwap sends 2000 USDC to attacker and 1 WETH to victim.

2 After reorg (all previous transactions are cancelled):
Attacker adds an order (e.g. 0.1 WETH for 2000 USDC) that gets the id 1.
Attacker resends victim’s transaction that fills the order with id 1.
FundSwap sends 2000 USDC to the attacker and 0.1 WETH to the victim.

Result of the attack: Theft of taker’s tokens via unfavorable order.

Recommendation
Use hash of the order as its identifier.

References
1. SCSVS G4: Business Logic

[CFND-290d84c-L04] Whitelist bypass via changed order
LOW FIXED

Retest (2023-12-12)

The vulnerability has been removed as recommended. Plugins cannot change token
addresses.

27

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L162
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md

composable-security.com

Affected contracts
PluginLib.sol
TokenWhitelistPlugin.sol

Description
The TokenWhitelistPlugin plugin makes sure that the exchanged tokens are on the list of
allowed tokens (TokenWhitelistPlugin.sol#L43, TokenWhitelistPlugin.sol#L50). However,
other plugins can change those tokens and bypass the whitelist.

Attack scenario
The attackers might take the following steps in turn:

1 A new plugin is added (after whitelisting plugin), which replaces the token inside the
order to the non-whitelisted token.

Result of the attack: Exchanging tokens that are not on the whitelist.

Recommendation
The general recommendation is to not allow to change tokens by the plugins and
take token addresses from the original order in all cases.
However, if the dev team plans to allow to change tokens by plugins, make sure
that the whitelisting plugin is the first one on the plugins list.

References
1. SCSVS G5: Access control

[CFND-290d84c-L05] Full order fill with partial fill
LOW FIXED

Retest (2023-12-12)

The vulnerability has been removed after the code freeze, before the audit started.

Affected contracts
FundSwap.sol

28

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/TokenWhitelistPlugin.sol
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/TokenWhitelistPlugin.sol#L43
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/TokenWhitelistPlugin.sol#L50
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x105-G5-Access-Control.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol

composable-security.com

Description
The _fillPublicOrderPartially function allows to fill full amounts of the order that does
not result in burning the order and does not emit the PublicOrderFilled event.

The taker can later call fillPublicOrder function with amount equal to 0 to emit that event,
but there is no incentive for them to do that.

Note: The codefundedteam also reported this vulnerability independently after the code
freeze.

Attack scenario
The attackers might take the following steps in turn:

1 Maker adds an order (e.g. selling 1 WETH for 2000 USDC).
2 Taker calls the fillPublicOrderPartially with amountIn equal to 2000 USDC.
3 FundSwap makes the partial fill and the order remains with amounts equal to 0, but no

PublicOrderFilled is emitted.

Result of the attack: Lack of PublicOrderFilled event when the order is filled fully.

Recommendation
Detect a case when taker calls fillPublicOrderPartially function with the full
amount of makerBuyTokenAmount and revert.

FundSwap.sol#L356

References
1. SCSVS G4: Business Logic

29

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L356
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L356
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md

composable-security.com

6. Recommendations

[CFND-290d84c-R01] Consider using the latest solidity
version
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented. The version used is 0.8.23.

Description
In accordance with the best security practices, it is recommended to use the latest stable
versions of major Solidity releases. Very often, older versions contain bugs that have been
discovered and fixed in newer versions.

Moreover, it is worth remembering that the version should be clearly specified so that all tests
and compilations are performed with the same version.

Recommendation
Use a specific version of Solidity compiler (latest stable):

pragma solidity 0.8.23;

WARNING: If you plan to deploy on multiple chains, be aware that some of them don’t
support PUSH0 opcode, which will be in your bytecode if you use solc >=0.8.20. In this
situation, it is recommended to choose 0.8.19.

References
1. SCSVS V1: Architecture, design and threat modeling

[CFND-290d84c-R02] Import specific contracts from the file
INFO IMPLEMENTED

Retest (2023-12-19)

The recommendation has been implemented.

30

https://composable-security.com
https://github.com/securing/SCSVS/blob/master/1.2/0x10-V1-Architecture-Design-Threat-modelling.md

composable-security.com

Retest (2023-12-12)

The recommendation has been partially implemented. The libraries still import full files.
We present imports from OrderLib.sol file:

1 // SPDX-License-Identifier: MIT
2 pragma solidity 0.8.23;
3
4 import ’@openzeppelin/contracts/utils/math/Math.sol’;
5 import ’../OrderStructs.sol’;

Description
Import declarations should import specific identifiers, rather than the whole file. Using import
declarations of the form import <identifier_name> from "some/file.sol" avoids pollut-
ing the symbol namespace making flattened files smaller, and speeds up compilation (but
does not save any gas).

Recommendation
Use import declarations of the form import <identifier_name> from "some/file.
sol".

References
1. SCSVS G11: Code clarity

[CFND-290d84c-R03] Use correct type uint16
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented. Now the uint16 type is used for the
lowestFee variable.

Description
The lowestFee variable is of type uint256 while the fees are kept in uint16 type. Later, the
lowestFee variable is also casted to uint16.

Recommendation
Use uint16 type for lowestFee variable.

31

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L289

composable-security.com

References
1. SCSVS G11: Code clarity

[CFND-290d84c-R04] Use proper prefixes for contracts
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented. Now the abstract contract name is Plug-
inBase.

Description
Do not use I prefix for abstract contracts (IPlugin). The best practice is to use it with inter-
faces.

Recommendation
Use BasePlugin instead of IPlugin for the abstract contract.

References
1. SCSVS G11: Code clarity

[CFND-290d84c-R05] Use prefix increment
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented.

Description
Consider using the prefix increment expression whenever the return value is not needed.
The prefix increment expression is cheaper in terms of gas.

Recommendation
Use ++i instead of i++.

FundSwapBatchExecutor.sol#L69

32

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/IPlugin.sol#L22
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapBatchExecutor.sol#L69

composable-security.com

FundSwapBatchExecutor.sol#L97
PluginLib.sol#L98
PluginLib.sol#L116
PluginLib.sol#L132
PluginLib.sol#L148
PluginLib.sol#L164
PluginLib.sol#L180
FeeAggregatorPlugin.sol#L168
FeeAggregatorPlugin.sol#L208
FeeAggregatorPlugin.sol#L246
FeeAggregatorPlugin.sol#L248
FeeAggregatorPlugin.sol#L258
FeeAggregatorPlugin.sol#L264
FeeAggregatorPlugin.sol#L291

References
1. Semgrep: Use prefix increment
2. SCSVS G11: Code clarity

[CFND-290d84c-R06] Inconsistent checks of balances and
approvals for order
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented. Now also taker balance is verified.

170 if (
171 IERC20(privateOrder.makerBuyToken).balanceOf(_msgSender()) <
172 privateOrder.makerBuyTokenAmount
173) {
174 revert FundSwap__InsufficientTakerBalance();
175 }

Description
The function fillPrivateOrder has inconsistent checks of balances and approvals. Only
the balance of the maker is verified.

33

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapBatchExecutor.sol#L97
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L98
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L116
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L132
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L148
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L164
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L180
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L168
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L208
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L246
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L248
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L258
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L264
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L291
https://semgrep.dev/r?q=solidity.performance.use-prefix-increment-not-postfix.use-prefix-increment-not-postfix
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L150

composable-security.com

149 if (
150 IERC20(privateOrder.makerSellToken).balanceOf(privateOrder.maker) <
151 privateOrder.makerSellTokenAmount
152) {
153 revert FundSwap__InsufficientMakerBalance();

Recommendation
The fillPrivateOrder function should also verify appropriate approvals and
taker side of the order.
Due to the large number of checks here, it is recommended grouping and sepa-
rating them with comments describing specific sections to increase the readability
of the code.

References
1. SCSVS G4: Business Logic

[CFND-290d84c-R07] Remove maker key from mapping
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented.

Description
It is not necessary to have maker as the key because the maker is part of the hash and cannot
be spoofed as their signature is checked.

1 /// @dev token => order hash => is executed
2 mapping(address => mapping(bytes32 => bool)) public executedPrivateOrderHashes

;

should be:

1 /// @dev token => order hash => is executed
2 mapping(bytes32 => bool)) public executedPrivateOrderHashes;

Recommendation
Remove the address from the mapping and limit yourself to the order hash as the key.

34

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x104-G4-Business-Logic.md

composable-security.com

References
1. SCSVS G11: Code clarity

[CFND-290d84c-R08] Handle malicious string data
INFO ACKNOWLEDGED

Retest (2023-12-12)

The developers team has acknowledged the recommendation and is aware of potential
XSS on the front-end side.

Description
When handling strings, remember to handle them appropriately on the front-end and back-
end sides of web2 applications. They can be a path to attack an application via Cross-Site
Scripting.

Recommendation
Validate strings passed through the smart contracts on the web2 part.

FundSwapOrderManager.sol#L84

References
1. SCSVS I1: Basic

[CFND-290d84c-R09] Use nested ifs
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented. Currently, the nested ifs are used instead
of &&.

Description
Using nested ifs is cheaper than using && multiple check combinations. There are more
advantages, such as easier to read code and better coverage reports.

35

https://composable-security.com
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwapOrderManager.sol#L84
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x300-Integrations/0x301-I1-Basic.md

composable-security.com

Recommendation
Use nested ifs.

FundSwapPrivateOrderExecutor.sol#L155
FundSwapPrivateOrderExecutor.sol#L158
FeeAggregatorPlugin.sol#L252
FundSwap.sol#L262
FundSwap.sol#L265
FundSwap.sol#L361

References
1. Semgrep: Using nested if
2. SCSVS G11: Code clarity

[CFND-290d84c-R10] Store length before the loop
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented. Currently, the length in detected LOCs
is stored before loops..

Description
Caching the array length outside a loop saves reading it on each iteration, as long as the
array’s length is not changed during the loop.

Recommendation
Save the length of the array in a variable and use the variable in the loop.

FundSwapBatchExecutor.sol#L69
FundSwapBatchExecutor.sol#L97
PluginLib.sol#L98
PluginLib.sol#L116
PluginLib.sol#L132
PluginLib.sol#L148
PluginLib.sol#L164
PluginLib.sol#L180
FeeAggregatorPlugin.sol#L168
FeeAggregatorPlugin.sol#L246

36

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L155
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L158
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L252
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L262
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L265
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/FundSwap.sol#L361
https://semgrep.dev/r?q=solidity.performance.use-nested-if.use-nested-if
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapBatchExecutor.sol#L69
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapBatchExecutor.sol#L97
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L98
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L116
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L132
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L148
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L164
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/libraries/PluginLib.sol#L180
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L168
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L246

composable-security.com

FeeAggregatorPlugin.sol#L248
FeeAggregatorPlugin.sol#L291

References
1. Semgrep: Array length outside the loop
2. SCSVS G11: Code clarity

[CFND-290d84c-R11] Avoid multiple calls with the same
parameters
INFO IMPLEMENTED

Retest (2023-12-12)

The recommendation has been implemented. Currently neither
calculateOrderAmountsAfterFill nor hashOrder is called twice.

Description
Calling the same function with identical parameters reduces code readability and costs more
gas.

The OrderLib.calculateOrderAmountsAfterFill function is called twice in _fillPublicOrderPartially
function (directly, and nested).

The OrderSignatureVerifierLib.hashOrder function is unnecessarily called two times in
fillPrivateOrder (1,2), because there exists a orderHash variable.

Recommendation
Store the value after the first call and reuse it.

References
1. SCSVS G11: Code clarity

37

https://composable-security.com
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L248
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/plugins/FeeAggregatorPlugin.sol#L291
https://semgrep.dev/r?q=solidity.performance.array-length-outside-loop.array-length-outside-loop
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwap.sol#L379
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwap.sol#L392
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L132
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L163
https://github.com/codefunded/sc-fundswap//tree/290d84c77167058280119ee829ebc114c18955e6/contracts/periphery/FundSwapPrivateOrderExecutor.sol#L170
https://github.com/ComposableSecurity/SCSVS/blob/master/2.0/0x100-General/0x111-G11-Code-Clarity.md

composable-security.com

7. Impact on risk classification
Risk classification is based on the one developed by OWASP 1, however it has been adapted
to the immutable and transparent code nature of smart contracts. The Web3 ecosystem
forgives much less mistakes than in the case of traditional applications, the servers of which
can be covered by many layers of security.

Therefore, the classification is more strict and indicates higher priorities for paying attention
to security.

OVERALL RISK SEVERITY

HIGH CRITICAL HIGH MEDIUM

Impact on risk MEDIUM MEDIUM MEDIUM LOW

LOW LOW LOW INFO

HIGH MEDIUM LOW

Likelihood

1OWASP Risk Rating methodology

38

https://composable-security.com
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology

composable-security.com

8. Long-term best practices

8.1. Use automated tools to scan your code regularly
It’s a good idea to incorporate automated tools (e.g. slither) into the code writing process.
This will allow basic security issues to be detected and addressed at a very early stage.

8.2. Perform threat modeling
Before implementing or introducing changes to smart contracts, perform threat modeling
and think with your team about what can go wrong. Set potential targets of the attacker and
possible ways to achieve them, keep it in mind during implementation to prevent bad design
decisions.

8.3. Use Smart Contract Security Verification Standard
Use proven standards to maintain a high level of security for your contracts. Treat individual
categories as checklists to verify the security of individual components. Expand your unit
tests with selected checks from the list to be sure when introducing changes that they did not
affect the security of the project.

8.4. Discuss audit reports and learn from them
The best guarantee of security is the constant development of team knowledge. To use
the audit as effectively as possible, make sure that everyone in the team understands the
mistakes made. Consider whether the detected vulnerabilities may exist in other places,
audits always have a limited time and the developers know the code best.

8.5. Monitor your and similar contracts
Use the tools available on the market to monitor key contracts (e.g. the ones where user’s
tokens are kept). If you have used code from another project, monitor their contracts as well
and introduce procedures to capture information about detected vulnerabilities in their code.

39

https://composable-security.com

Damian Rusinek
Smart Contracts Auditor
@drdr_zz
damian.rusinek@composable-security.com

Paweł Kuryłowicz
Smart Contracts Auditor
@wh01s7
pawel.kurylowicz@composable-security.com

https://twitter.com/drdr_zz
mailto:damian.rusinek@composable-security.com
https://twitter.com/wh01s7
mailto:pawel.kurylowicz@composable-security.com

	1 Retest summary (2023-12-19)
	1.1 Results
	1.2 Scope

	2 Current findings status
	3 Security review summary (2023-11-14)
	3.1 Results
	3.2 Scope

	4 Project details
	4.1 Projects goal
	4.2 Agreed scope of tests
	4.3 Threat analysis
	4.4 Testing methodology
	4.5 Disclaimer

	5 Vulnerabilities
	[CFND-290d84c-C01] Loss and theft of tokens in batch executor
	[CFND-290d84c-H01] Cancelling order via re-entrancy
	[CFND-290d84c-M01] Stealing treasury tokens via re-entrancy
	[CFND-290d84c-M02] Critical impact on FundSwap by malicious plugin
	[CFND-290d84c-M03] Invalid fee used
	[CFND-290d84c-M04] Tokens theft via modified fee
	[CFND-290d84c-M05] Inconsistent use of modified order
	[CFND-290d84c-M06] Incorrect handling of non-standard ERC20 tokens
	[CFND-290d84c-L01] Unfavorable rounding for the maker
	[CFND-290d84c-L02] Lack of 2-step ownership transfer
	[CFND-290d84c-L03] Using counter ids in chains with long reorgs
	[CFND-290d84c-L04] Whitelist bypass via changed order
	[CFND-290d84c-L05] Full order fill with partial fill

	6 Recommendations
	[CFND-290d84c-R01] Consider using the latest solidity version
	[CFND-290d84c-R02] Import specific contracts from the file
	[CFND-290d84c-R03] Use correct type uint16
	[CFND-290d84c-R04] Use proper prefixes for contracts
	[CFND-290d84c-R05] Use prefix increment
	[CFND-290d84c-R06] Inconsistent checks of balances and approvals for order
	[CFND-290d84c-R07] Remove maker key from mapping
	[CFND-290d84c-R08] Handle malicious string data
	[CFND-290d84c-R09] Use nested ifs
	[CFND-290d84c-R10] Store length before the loop
	[CFND-290d84c-R11] Avoid multiple calls with the same parameters

	7 Impact on risk classification
	8 Long-term best practices
	8.1 Use automated tools to scan your code regularly
	8.2 Perform threat modeling
	8.3 Use Smart Contract Security Verification Standard
	8.4 Discuss audit reports and learn from them
	8.5 Monitor your and similar contracts

